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This paper deals with steady inviscid supersonic flow round a wedge, on
the surface of which there are surface currents which flow perpendicular-
ly to the air flow, the square of the intensity of these currents being
inversely proportional, to the distance from the vertex of the wedge.

The problem is posed in the same manner as in {1]. The gas is assumed to
be nonconducting in front of the shock wave and it is finitely conduct-
ing in the region of the disturbed current, whilst the transition through
the shock wave is described by the same relationships as those which
would hold without the presence of the magnetic field. Within these
assumptions there does exist a self-similar solution of the magnetohydro-
dynamic equations which describes flow close to the vertex of the wedge
and, it is indeed a generalization of
the well known accurate solution of the
problem of flow of a supersonic stream
round a wedge in the absence of a mag-
netic field.

For a given magnetic field intensity
there exist two solutions I of the
boundary value problem obtained from Fig. 1
the appropriate system of three ordi-
nary differential equations. When the
intensity of the magnetic field tends to zero these solutions go to the
well known nonmagnetic solutions to the problem of flow round a wedge
with both weak and strong shock and the velocity of the gas on the wedge
surface is not zero. Additionally, there exist infinite numbers of solu~
tions II for which the shock angle takes any value within the interval
between the values obtained from solution I.

Solution 1I is characterized by zero velocity on the wedge surface
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and it has no analog in normal hydrodynamics. The requirement for a con-
tinuous relationship between the solution and the intensity of the mag-
netic field leads one to the conclusion that in practice the solution of
type I which corresponds to weak shock will be realized. It is demon-
strated for this solution that there is a continuous transition from flow
with an attached shock wave in the absence of a field to flow with a de-
tached shock wave with a rather strong field.

Some examples are given which have been worked out on the high speed
M-20 computer.

1. Consider a plain inviscid supersonic stream flowing steadily over
the top surface of a wedge which makes an angle « with the direction of
the undisturbed stream velocity vector U,. Cartesian coordinates xy are
directed as shown in Fig. 1.

It is assumed that surface currents whose density is given by
J o= — Ax—"

where A is a dimensional constant, pass normally to the plane of flow on
the surface. The wedge has sides of length L.

The components h and h of the magnetic field vector b induced by the
given distribution j are given by the relations
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(¢ is the velocity of light in vacuum).

The conductivity ¢ is assumed to be zero in front of the shock wave,
whilst behind the shock wave the gas conductivity depends on thermal
ionization and it is finite so that the magnet1c Reynolds number is given
by R, = dnc QDL/c < 1. The problem is posed in the same way as in [11,
(the dlfference between the two cases involves the choice of magnetic
field which is assumed in [1] to be constant and directed normally to
the surface). The solution is constructed for flows with an attached
shock wave so that the stream along the upper surface of the wedge may



One self-similar solution to the magnetohydrodynamic equations 1249

be considered to be independent of that flowing past the lower surface.
Induced magnetic fields which could cause these flow fields to interact,
may be neglected, as will be seen from what follows.

The solution is constructed in the neighborhood of the vertex of the
wedge in the region (x? + y?)!/2 <1 << L,within which, from Equations
(1.1) to (1.4) (with relative error of the order of ¥ (I/L), we have, for
the given magnetic field

__Vand _ Vina

hx CV;: f(n)’ hi} - m‘"@(ﬂ) (1-5)

Now represent the resultant magnetic field vector in the form h + h;
where h’ is the induced magnetic field. For h’, from the expression for
Ohm’s law, taking into consideration the absence of electric field, we
arrive at the relationship

rot h' = R, Vx (h 4 h’)

where V is the velocity vector made dimensionless by division through U.
x and y are referred to L. If we use Newton potentials it is possible to
show that h’ is everywhere finite, and in the region of the disturbed
stream is of order R‘A/ci L. Thus within the region we are discussing
close to the vertex of the wedge the ratio h'/h of the induced and
applied field is of order V(I/L). It follows that both the finiteness of
L and the induced magnetic field may be neglected with an error of order

{(1/L).

The equations of magnetohydrodynamics behind a shock wave in
dimensional variables (for simplicity we assume a perfect gas) may be
written
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In these expressions u and v are components of the velocity vector
along the x, y axes respectively, p is the density, p the pressure, o
the specific electrical conductivity, « the adiabatic index, M, the Mach
number of the undisturbed stream. It will be assumed that ¢ is constant
over the whole region of the undisturbed stream and M, is infinite. It
should be noted that the assumptions (o = const, My, = », for a perfect
gas) are not essential for the existence of a self-similar solution and
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are only made to simplify the investigation.

Assuming that the magnetic field is given by Equations (1.5) whilst
the boundary conditions for the hydrodynamic quantities reduce to the
condition of impermeability on the body, i.e. no flow through the sur-
face, and to the usual nonmagnetic relationships on the shock wave [1],
and making use of dimensional analysis [2], it is easy to convince one-
self of the existence of a self-similar solution of Equation (1.6) in
which the velocity vector, pressure and density are constant along rays
which pass through the vertex of the wedge, i.e. they depend on n =
tan ¢ = y/x, where ¢ is the angle of inclination of a ray to the x-axis.
The angle 8, of an oblique shock which emanates from the vertex of the
wedge (Fig. 1) is determined in the process of the solution.

Now eliminate the pressure from Equation (1.6) using the foregoing
equation and relate the velocity and density to their values in the un-
disturbed stream, retaining for the nondimensional values the same nota-
tions as for the dimensional ones. The result of going over to the inde-
pendent variable n is to arrive at a system of three ordinary differ-
ential equations (strokes denote differentiation with respect to n)

Here
r=fv—qu, B=v—mu A=F—-010+71)e
Py=p(a —of) +ubyn (=150 —ut— o)
P,=p (e +uf) —xBy, Py=—p@+om+xrl+n) (1.8)
i =25 (p=m—e=V+w—t)

where f(n) and ¢(n) are determined according to (1.4), the intensity of
the magnetic field is represented by the dimensionless parameter q > U,
where pp is the density of the undisturbed stream.

It should be observed that there exists a similar self-similar solu-
tion for the case of an axially symmetric flow past a cone with azimuthal
surface currents whose densities (as in the plane case) are inversely
proportional to the square root of the distance from the vertex of the

cone,

2. The system (1.7) is studied in the velocity hodograph where the
motion of a representative point V(u, v) is followed as n changes. The
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solution is defined w1th1n a circle C; of unit radius the square of the
velocity of sound being a® > 0.

On the surface uv families (1.8) of curves B, vy, A, Pl‘ P2, P3 are
given, each of which depends on the parameter n. (llere and below the
curves P, y, etc. denote curves which are obtained from the equations
=0, y =0 etc.) On curves P and A the derivatives u’, v’ and p’ go to
infinity, i.e. these lines become singular.
On the rest of the curves the derivatives
u’, v' and p’ vanish according to (1.7).
These curves are depicted in Fig. 2 where
they are represented for a fixed value of
n. The straight lines B, y and P, go
through the origin (the straight line P,)
has not been taken to C, so as not to con-
fuse the drawing). Their angular coeffi-
cients are respectively ks, k , k, and are
expressed in the following way

]
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The straight lines B and y have a
simple physical explanation; the line P
divides the regions where the angle of
inclination of the velocity vector with the x-axis is less (B < 0) and
greater (P > 0) than the angle of inclination ¢ of a given ray in the
physical plane. Similarly y divides the region where the angle between
the velocity vector and the x-axis is less (y < 0) and greater {y > 0)
than the angle between the magnetic field vector {1.5) and the x-axis.
The curves A and P, are ellipses, P, is a hyperbola. The curve A is well
known from Busemann’s theory of characteristics (see, for instance, [3]);
its maJor and minor axes are equal respectively to unity and to (x- 1)1/2

/(x + 1Y/

Fig. 2.

In this problem the major axis of ellipse A is directed along line B,
i.e. it makes an angle ¢ with the u-axis equal to the angle between the
corresponding ray in the physical plane and the x-axis. If point V,
always located below the straight line P, as will be seen later, lies
within, on or outside the ellipse A, it shows that the angle of inclina-
tion of the characteristic of the first family with the x-axis is
respectively greater than, equal to or less than ¢. This follows from the
circumstance that the characteristic equation in the physical plane
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obtained from (1.6) has the same form as in normal hydrodynamics.

On the ellipse P, when n changes from zero to ® the major axis turns
counter-clockwise and decreases from 2x/(3x + 1)1/2 to 1 whilst the minor
axis increases from 0 to (x — 1)1/2/(x + 1)1/2, When n ~ @ the ellipse
P, coincides with A. The ellipse P, intersects C, twice; on line B and
on the ray whose angular coefficient is k,.

The hyperbola P, intersects the circle C, on line B and on a ray whose
angular coefficient is k, where,

_ ) _ M+ -1+ "+ %]
DA+ N (2.2)

When n = 0 the vertex of the hyperbola lies at the point u =1, v =0
whilst its axis coincides with the u-axis

w2 g (2.3)
When 1 increases the axis of the hyperbola moves counter-clockwise
whilst the vertex approaches the origin. When n - « the hyperbola P,
decays into a pair of straight lines, u = 0, v = xu/(x - 1). On Fig. 3
B, P, and P, are shown for n = 0.2 (lightly dotted), n = 1 (heavy dots)
and n = 10 (dots and dashes).* Here the envelope of hyperbolas P, is also
shown (line C on Figs. 2 and 3). It
can be shown that the strophoid**
(circle C, in Fig. 3), constructed for
any positive value of the angle « be-
tween the undisturbed velocity and the
x-axis and giving the condition of the
stream behind the shock wave, always
lies within the envelope and never
intersects it when the angle 8, varies
(Fig. 1). The only possible exception
is point A (Fig. 3) in which when .
a = 0 the strophoid touches the : ] N h
envelope from within. The equations of L
envelope and of strophoid (when a = Q) |
near point A may be written down re-
spectively thus Fig. 3.

*  Both here and below all constructions and calculations relate to
K = 1.4,
** Tt is known that when M, = © the strophoid decays into a circle.
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u=1-—
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3. Quantities which lie immediately behind the shock wave will be Je-
noted by suffix 0 everywhere. As evidently behind the wave the angle be-
tween the velocity vector and the x-axis is less than 8, we have B; < 0,
i.e. the representative point V, immediately behind the wave lies below
the straight line B. This point moreover lies within A, for with super-
sonic velocity behind the wave the angle of inclination of the character-
istic of the first family exceeds 8 and with subsonic velocity V it
always lies within the Busemann ellipse. Thus behind the shock wave the
point V, may lie in one of six regions (Fig. 2). Within each of the
regions the derivative dv/du along the integral curve (1.7) does not
change sign. The direction of motion of point V with decrease in n, i.e.
with motion of the shock wave to the body is shown in Fig. 2 by means of
an arrow. Note that P, is not a boundary of the region. Besides in
accordance with Section 2, in region 4 point V, lies outside the hyper-
bola P|. We will now prove several theorems about the motion of V.

a) From Equations (1.7) and (1.8) for the quantities y along the
integral curve we have on line y

ary v
<d" )*=° A+ [+ ) —1]" <0 (3.4)

under the assumption v > 0 and n > 0. It follows from this that in the
case of motion from shock wave to body, i.e. decrease in 7, the quantity
y cannot change sign from positive to negative (the transition in the
reverse direction may take place).

b) The integral curve does not reach line B for n > 0. We are going
to give the proof by proving the impossibility of its opposite. Suppose
that at some point (we will characterize it by suffix ,) the quantity {
becomes zero. We will write down the auxiliary equations which follow
from Equations (1.7), and (1.8):

dinp 14 qupg du g7 Py
Tdi T P Ll *’)T kA (3:2)

We choose on the given integral curve in the neighborhood of point n,

some other point which we will denote by = . It follows from Section 2
that over the interval 7 .N,, the quantities P,, P,, P, do not vanish any-
where and they do not change sign.
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From the first equation (3.2) we have for p

%

In 2 = S »}%du (3.3)

xx
Tiwn

where the integral on the right-hand side of (3.3) is already known to
converge, i.e. p is a finite quantity within the closed interval nm,,-
Furthermore, from the second equation (3.2) we have

k13

gy P3 -+ pul d 3 .

L2 L du = In T .
S 7P B (3 4)
Ugn

If we let u tend to u, we arrive at a contradiction; the left-hand
side of Equation (3.4) remains finite whilst the right-hand side grows
without limit for § =0, and this proves the theorem.

c) The integral curve cannot intersect the line P, when point V moves
from within the ellipse. Suppose on the contrary, that at point A there
has been some intersection of the integral curve with ellipse P, (Fig.2).
As the angular coefficient of the tangent to P, is positive in the given
region, then along the integral curve dv/du > 0 at point A. On the other
hand from the first and second equations (1.7) it follows that dv/du = 0
at this point. The contradiction in fact confirms the statement made

above.

d) In region 4 the integral curve does not intersect the line P,.
Such an intersection evidently could take place at high enough values of
n when the vertex of the hyperbolas is close to the origin. The proof is
similar to the one above and rests on the first two equations (1.7).

e) The density p differs from zero and infinity everywhere, except at
the two points of intersection of lines P, and P,. This follows from
Equation (3.3) because the expression in the integral sign on the right-
hand sign is finite. If the integral curve intersects line P, at a point
within the interval nn__, then instead of {3.3) in the neighborhood of
this point we make use of the similar equation

k1]
= | frav (3.5)
Tan
f) The ellipse A is the limiting line for the solutions (1.7). Actu-
ally suppose at some point represented by * lying at the boundary of
regions 1 or 2 (Fig. 2), the integral curve intersects the line 4. In
the neighborhood of this point we have A = (u-—u‘)m, where o=ol(u, v,1),
®, > 0. The first equation (1.7) can be written thus
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du _  Q qul
m=to e=T, 0>0 (3.6)

The solution (3.6) in the neighborhood of the singular point has the
form

lu—u,|=V2Q,(n —n)

i.e. it cannot be continued into the region n < n_.

4. Consider now the behavior of the integral curves, when V lies in
region 4. According to the theorems (Section 3, a, b, ¢) when n > 0 the
integral curve cannot go outside region 4. When n decreases the component
velocities u and v decrease monotonically. It will be seen (Section 7)
that when n tends to zero when region 4 decays into a section of the u-
axis it is not possible to obtain a solution for which the representative
point tends to some point with
coordinates v = 0, u =u; #0

within region 4. Thus in region
4 one should search for a solu-
tion of (1.7) in which lim u=0 /
and lim v = 0 for n - 0. Write

down now the system (1.7) for n

close to zero in a simplified

form expanding f(n) and ¢(n) in

series, and retaining the first

terms, bearing in mind also how i
small u and v are.

We obtain

r— __q{v—05nu)n
P (v —nu)

v = nu/’ p/ =0 (4.1) Pig. 4.

Introducing P as an unknown function, we obtain the equations
" 6 4 ’
Bp" + 5B —8fn =0, u=—Pp, v=P+nu
p = p; = const, c5=—g—1 (4.2)
The first equation (4.2) for P allows for a group transformation and

can be reduced to an equation of the first order in the quantities

=p/md, ¥y = p'/mE
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gg____:é((),&yma:)-}—hy dlng 1 (43\
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Equation (4.3), whose integral curves are shown in Fig. 4 (the arrows
show the directions of increasing n), has two singular points; the point
0 (x =0, y =0, saddle and node running together) and 4 (x = - §/12,

y =~ 8/4, i.e. focus). PRegion 4 on this figure lies in the third
quadrant within the angle made by the straight lines y = 2x (correspond-
ing to our approximation y = 0) and x = 0 (B = 0). In accordance with
the theorems proved, the integral curves which enter this region, tend
toward point A. The latter gives an analytical solution (4.3) which
satisfies the condition of impermeability (i.e. not flowing through)

8 8
u=—1, v =21, p = p, = const (4.4)

To find the other solutions close to the singular point we transform
the first equation (4.3), assuming z = - §/12 + §, y = — §/4 + [, where
€ and [ are small quantities. If we integrate the equations so obtained
we arrive at

VE =358 T 5.7582¢% = const, @ = o ﬂ@_’—%’-’-‘f’l (4.5)
From (4.5) and from the second equation (4.3) we obtain (C, and C,
are arbitrary constants)

8 8 vCi ¥V 551, C2 cos
?+ﬁmmvi+m:lx, xzyzaxnﬁ, "=r"‘”"‘"cos§; (4.6)

If use is made of (4.2) and (4.6), expressions for u, v, p can be
found which, if substituted into the basic equations (1.7), show that
solution (4,6) of Equation (4.1) really does give the main terms of the
asymptotic expansions of the solutions near the singularities. The
following terms of the expansion may be obtained from (1.7). When C, = 0,
when solution (4.6) transforms to (4.4), it is possible to arrive at a
solution in power series form

8, 15,
u——Tn *‘"’-@-ﬂ”‘}‘...

8 36
z:==-§~q3-1§7ﬁ~%...

3 —x dinp
p=p (1 ““”—x_);—é}“ —f'“. (4‘7)

In a similar manner it is possible to obtain solutions for C; not
equal to 0 when they are not analytic functions, when n = 0.
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Thus the general solution in region 4 which satisfies the condition
of impermeability for n = 0 depends on the arbitrary constant quantities
p; > 0, C, and C,. For this solu-
tion not only v but also u vanish
on the surface of the body. Making
use of two conditions on a shock
wave which connect the three un-
known functions u, v, p, it 1s
possible to exclude the depend-
ence on two parameters, and so
represent the solution as a set
of relations in terms of one para-
meter which may for instance be
taken to be the angle of inclina-
tion of the shock wave 8, * with
q fixed or g with 8, fixed. Under
these conditions ¢ may vary be-

Fig. 5. tween 0 and @ (Section 5 deals
with the case where ¢ = @, when
solution (4.7) is inapplicable). Thus the solution imposed by the bound-
ary problem in region 4 turns out to be positive or negative (multi-

signed). On Fig. 5 a calculated example is shown for the case a« = 0,
8, = 45°, g = 20 and q = 30.

-3

045

S

85—

The solution which corresponds to zero velocity at the wall will be
called solution II.

3. Evidently when V lies in region 3 (Fig. 2), when n is decreased, a
transition takes place 3 - 4 - 0 (this will denote a transition from one
region to another and the tendency of the representative point to
approach the origin for n ~ 0), i.e. the solution in region 3 is also of
single sign.

6. To complete the investigation of the solutions in regions 4 and 3
and for what follows it is essential to know the behavior of the integral
curves in the limiting case q = @. To do this we transforms (1.7) into
the following form

v _ P dlnp Py an _ 34 6.1
P du =P du = q1P; (6.1)

If we make g tend to ® and assume P, # 0 we can identify two cases.

*  QObviously 60 is such that V, lies within region 4.
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(a) Case for y # 0

dv Py dlnp P
T =P T =P, == const (6.2)

(b) Case for y = 0. Substltutlng into the first and second of Equa-
tions (6.1) n = 2uv/(u - v?) from condition y = 0 and making use of
(1.4) and (1.8) we arrive at

_d_g_ - 2uy [1 — % (% — 1)1 (u? + 2%)] 6.3

du ~ W@ — v 4 (1 o) [k + 1) (v — 1) oR — u?] (6.3)

dlnp 2u (ut | 2% 6.4
T T T BN (@ —PF @I D kF D (x— 1) — @]} (6.4)

In cases (a) and (b) the equations in the hodograph plane are closed.
The integral curves for y # 0 are described by the first equation (6.2)
up to the point when the integral curve does not intersect line y = 0,
after which (6.3) is used. If such an intersection does not take place
(then the integral curve intersects line A, which indicates the lack of
a solution with the accepted initial conditions (Section 3, e). When
undergoing the transitions 4 -~ 0 or 3 ~ 4 - 0, the representative point
V after the intersection between the integral curve and line y, moves
along the "upper edge" of the cut y = 0, tending to zero at the origin
with decreasing 1, in the neighborhood of the origin the main terms of
the expansion of solution (6.3) and (6.4) take the following form

v = Au®, p = pl(i—-— n = 24u, = const 6.5)

u'&
xw’l)’
distinct from the corresponding solution (4.7) with finite q.

7. Consider now the solution in region 2. For small g, when point V
hardly moves, when n decreases and the neighborhood of line B is not yet
approached, the following transitions take place: 2~ 5 - 4~ 0 or
2-3-4-0.

According to the analysis, the peint of the intersection S between
lines y and A is a moving node for Equation (1.7). With fixed q and de-
creasing 1 the representative point moves away from S; if g is large
enough, the integral curve in region 2 intersects with line A, i.e. the
solution evinces a limiting line. If g decreases the integral curve
intersects line A for smaller values of n.

There exists a value g = g, when the integral curve wholly lies in
region 2 whilst with tendlng to zero, v~ 0 and u~ u; # 0 (for ¢ < ¢
the solution I is obtained). Now examine the solution when the 1ntegrai
curve approaches the u-axis for n -~ 0. To do this we simplify Equation
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(1.7) making the assumption that v and 1 are small quantities. As a re-
sult we arrive at

(9t —=05nu)n -
v p (v — nu1) (7.4)
. g (r — 0.5 qu) ey o 203k M) dwe? 5
Ly Prorery) (1—u12)[(1 %1 "1)“ T M x-i] (7.2)
o = 2gq (v — 0.5 nuy) [(= 4+ 1) nuy -+ 2no} (7‘3)

(x—1) (0 — quy) (1 — ur?)

Equations (7.1) to (7.3) have an asymptotic solution when n tends to
zero and they satisfy the conditions
of impermeability, the main terms of

e T

/ ¥

/ C

445574_,M-f,,,—/””” n®
~ ¥

u = le‘—-zgl-,

g R |

2SN ST R

ﬁ\ﬂ
":§E§§§§§§§§§§§§ ¢ A solution in region 2 can take

place for ul2 > (k- 1)/(3x + 1},
’ when the integral curves approach the
Fig. 6. u-axis for n = 0 from above, and this
means that 2 - u,. When ul2 < (x ~1)/
(3k + 1) the integral curves can approach the u-axis for n ~ 0 from below
from region 6 and this will be denoted by 6 —~ u_.

In order to investigate the singularity on the u-axis put p = p; in
Equation (7.2). The integral curves of this equation in the vn plane are
shown in Fig. 6. In this figure a corresponds to the case ulz > (x -1/
(3« + 1) and 6b to the case for u12 < {k - 1)/(3x + 1). Curves C corre-
spond to solution (7.4) which depends on two parameters. If 1> u, >
{(k = 1)/x] in Fig. 6, a line P2 lies* above y and curve C separates
the integral curves 2 = 3 -~ 4 - 0, which go above C from the curves 2-1.
If4[(x - /&) > u; >d[(x = 1)/(3x + 1)] line P, lies below y and curve
C separates the curves 2 - 5~ 4 ~ 0 from the curves 2 ~ 1. In a similar
manner in Fig. 66,** the curve C separates the curve 6§ ~ I from the

* 1In this approximation with coordinates vn the line P, and also y will
be straight.

** Using other coordinates curve C is shown on Fig. 4 for the case
2
1 - u,“ = 1.
1
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curves 6 = 5 - 4 ~ 0. The singular point on the u-axis therefore is
similar to a saddle and curves C enter it from definite directions.

If we make use of Equations (1.7) solution (7.4) can be made more
accurate by finding the foIIOW1ng cerms in the expansion in series in 1.
For instance the expression for v in ”1 = (x - 1)/(3x + 1) takes the
following forms:

. S q (3n+1}3] 5 ,
iOVﬁ(}c+1)p1[x+sz x—1 |1 (7.9)

Owing to the fact that solution (7.4) depends on two parameters,
whilst on the shock wave there are two conditions which connect u, v, p,
in region 2 to each value of g there corresponds one unique solution I
which satisfies the condition of impermeability as distinct from solution
11 dealt with in Section 4.

When g, tends to zero the angle of inclination of the shock wave tends
to its non~magnet1c" value 900 The representative point behind the
shock wave lies on the u-axis and does not move when 1 decreases to zero,
i.e. the solution in region 2 tends to the well known exact solution of
the wedge problem (weak shock solution).

Figure 7 illustrates an example in which calculations are done for
o = 30° 8, =11°.3 (n, = 0.2). The quantity g = 18.056 was so chosen
that the sclutxon for n ~ 0 took the form (7.4).

Solution (7.4) is valid for finite ¢ and u; # 1. When ¢ = @ the con-
ditions of impermeability for u; = 1 can be satisfied. To do this it is
necessary to see that V lies in
region 2 on the "lower edge” of the
cut y = 0. When n is reduced, point V
will move toward the circle C, (Fig.2).
A solution to Equations (6.3), (6.4), slos
satisfying the condition of imperme- - (7
ability has the following form ) -

wy 40, q:18056

]

g =1 —Co= + ... "]
n=2v({1-+Cvrt+...) 2102
p=Bv{{ +2Cv1+...) (1.6) y

C == const > 0, B = const >0 0 008 215 7

The solution (7.6) can be con- Fig. 7.
structed for x < 3. One can demon-
strate that for k > 3 the representative point behind the wave cannot be
on the boundary of region 2 on the line y. It is not out of place to note
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that for ¢ = ® the density (and therefore pressure) on the wedge surface
are both zero.

8. If we make use of the assumption that the gas in the shock wave is
in a high state of compression [4] (this is equivalent, as is well known,
to the assumption € = (k = 1)/(k + 1) << 1), an approximate solution can
be constructed in region 2 for values of g where the solution with mag-
netic field differs little from the corresponding nonmagnetic solution.
Now if we make use of the relationships for the quantities on the shock
wave (Fig., 1) when ¢ <<'1

vo=10,(1 —e)cosa— (e ) sina, uy= (1—82) cosa — (1 —¢e) 6 sina
po = & (8.1)

and from (7.4), we have with an error of magnitude el

e®una |, getsina [(3x 4 1) cos? aj(x — 1) — 1]
cos? o + 6costa

6y =€uwa-t

qe
4cosa

_ eqnP{(8n + 1) costaj(n—1)—1] _ 1 1_qe.' ( . )]
v= 6sin®a » P=3 cosa €unfa

= cosa[l — £ wla (€? wn’a — 1?)]

(8.2)

Formulas (8.2) can be applied when qe <1 and this follows from (7.4).

9. When point V comes into region 1. the condition of impermeability
cannot be satisfied and no solution to the boundary value problem exists.

10. Behavior of integral curves is now analyzed when point Vo lies in
region 5 or region 6.

When g is sufficiently small, when V hardly moves, when n is decreased
a transition 5 ~ 4 - 0 takes place, whilst in region 6 a solution to the
problem does not exist. The following theorems can be proved and these
are based on evaluations for the magnitude of dv/du for finite (1.7) and
infinite (6.2) values of g.

a) If, when q = », the integral curve emanating from some point 4 of
region 5 (Fig. 8) intersects y, then for any value of q the integral
curve will intersect y (the points of intersection are shown on Fig. 8
by circles and they come closer to A with decrease in q; the symbol ® re-
lates to curve g = ®). Thus for any values of 7 a transition 5~ 4 - 0
takes place from point A.

b) If the integral curve (6.2) for q = ®, emanating from some point C
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in region 6, intersects y, there exists some value ¢ > 0 such that for
all values ¢ > q_ the transition § = 5~ 4 ~ 0 is realized.

When ¢ = q, a condition of impermeability
in region A can be satisfied in accordance
with (7.4) with #,% < (x = 1)/(3< + 1) and
this corresponds to the tramsition 6 - u_
{curve C on Fig, 6, b).

It is of interest to observe that, when
g =~ 0, a solution to the boundary value
problem exists when the representative point
immediately behind the shock wave lies on
the u-axis. This solution corresponds to
the "strong shock” usual in the normal
hydrodynamics (Section 7).

¢) If the integral curve (6.2) when g=w,
in coming from some point V in region 5
(Fig. 8), intersects line P, and goes over
into region 2, evidently a limiting line will appear in the solution; the
integral curve will intersect A. Let us examine in this case how the solu-
tion is altered when we gradually increase 7 from zero. When ¢ is small
the transition 5 = 4 ~ 0 takes place. Then for any value of ¢ the straight
line y "overtakes" the representative point on line P,. Further increase
in ¢ results in an intersection between the integral curve and the line
y which lies at the boundary of regions 2 and 3, and it moves downwards
‘towards the u-axis. When this happens the transition 5 - 2~ 3~ 4~ 0
takes place until finally, when ¢ = g, solution 5 -~ 2~ u, is no longer
possible. When g > g_ there is no solution to the boundary value problem
{Section 7).

Fig. 8.

d) When V, lies at the boundary of region 5 on the lower edge of the
cut y the following cases may exist:

(1) dv/du determined by the conditions behind the shock wave are
greater than &, (2.1). This case is similar to case (a). Evidently a
transition 5 ~ 4 ~ 0 will always take place.

(2) dv/du < k_, here as in (c) transitions 5 = 4 ~ 0 are possible and
also 5§~ 2~ 3~ 4 - 0. When g = » the representative point moves along
the lower edge of the cut y in accordance with (6.3) whilst, when n ~ 0
we arrive at solution (7.6).

e) If along the integral curve (6.2) with g = ® emanating from some
point E in region 6 (Fig. 8), there takes place a tramsition 6 = 5~ 2,
then a limiting line will appear in the solution exactly as in case (b).
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In this case over some range of variation g(q _ < 7 < g ) the transi-
tions 6 ~ 5= 4 = 0 or, (for high values of q?, 6-5-2-3~4-0
will take place. When ¢ = q__

this solution 6 = 5 = 2 = u, will 7 ;

exist whilst when ¢ = g, solu- Pluy . a:30
tion will be 6~ 5~ 2~ u,. A

solution close to the u-axis has ;:?\F\\\

the form (7.4). Values of u on 020 — P

the surface of the wedge for ;335-~_“_4~_:==~
these solutions (respectively u,_ J

and u,,) satisfy the inequality q?jj_’___ 4

a2 < (e = 1) /B + 1) <2 Y

Figure 9 illustrates a sample ¥ gty o, 7
calculation for a = 30°, 8, = T 0F T w
54°.5 (n, = 1.4) when the repre-

sentative point on the wave V, Fig. 9.

lies within region 6. The quanti-

ties g,_ = 1.35 and q_, = 4.0 were chosen so that the solution for n -~ 0

took the form (7.4).

f) In region 6 there are points (D in Fig. 8) for which for any value
of g no solution to the boundary value problem exists.

11. Now fix the angle « and, using the results of Sections 4 to 10
study the motion V; along the strophoid (Fig. 10a) when 8, varies. Points
A and D describe the flow
when g = 0, respectively
behind a weak and strong
shock, and they corre-
spond to the angles o of
directional change of the
stream, If the angle of
inclination of the shock
wave becomes less than
8g¢: 1.€. its nonmagnetic
value for weak shock, the
representative point
appears in region 1
(Section 9), where no so-
lution exists.

At points B and C the magnitude of y is zero*. On arc AB the

* Note that when x » 3 everywhere on the stropheid y < 0, i.e. points
B and C do not exist. This leads to the position that curve g4 (80)
is closed for any angle of attack (see below). *
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magnitude y, < 0, i.e. the representative point, lies in region 2 where
for any 6, there exists a unique value of g = g + at which on the sur-
face of the body the condition of impermeabilit; is fulfilled for u,, >
V[(x - 1)/(3k + 1)] (Section 7). Vhen g < 7.+ then solution IT is ful-
filled. At point B the magnitude 9,+ = @ and the solution for n ~ 0 takes
the form (7.6).

On the arc BC, where y > 0 point V, lies in regions 3 or 4. llere for
fixed 8, and g varying from zero to infinity, solution II is satisfied.
If at point C the derivative dv/du > k_ then with counter-clockwise
motion along the strophoid from C poinz E will be met at which the inte-
gral curve (6.2) for ¢ = © touches line y.

For arc CE, the range in variation of g for which the integral curves
come to the origin of coordinates, is not limited from above. For each
point on the arc EF (point F is determined below) it is possible to
point out some point g = g, at which solution I holds, whilst the inte-
gral curves approach the u-axis from above and the velocity on the sur-
face of the wedge u,, > V{(k = 1)/(3x + 1)], When q < q,+ integral curves
II come to the origin whilst, when g > q,+ there will be no solution to
the boundary value problem.

For each point on the arc DF there exists some point q = q__ at which
the integral curves 1 approach the u-axis from below and the velocity on
the surface of the wedge is u,_ < Il(k = 1)/(3x + 1)]. When g > q,- inte-
gral curves Il approach the origin, whilst when ¢ < ¢ _ the solution to
the boundary problem does not exist. Thus for points Iying in region 6
on the arc EF, the range of variation in g over which there exists some
solution to II is determined by the inequalities g _ < g < q,.

When V, moves counter-clockwise the quantities u;_ and u,, approach
each other and at the same time q__ and g , approach until finally u,_ =
u, = ik = 1)/0x + 1)], 9,- = 0,4 2t point F. If Ve lies on a
strophoid below point F there will not be any solution to the boundary
value problem.

The character of the relationships between quantities q , and ¢ _ will
now be explained. These quantities present solution I in terms of the
angle of inclination of the shock 8, for various values of a. When a =0
points A and B coincide in the plane uy with the point u =1, v = 0.

This means that the relationship ¢ _,(8;) (the curve passing through A)
decays into the straight line 8, = 0. Calculation has shown that point
E is located on the arc DF when a = 0. When a = 0 at point D, 8, = n/2
and because of this for small values of a solutions can be obtained
(curve passing through point D), when 8, > w/2. On Fig. 10, b curves are
shown in diagram form for q*(eo) for small values of a. Fach point in
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the region between the two curves g (8;) corresponds to solution II. Ob-
serve that the angle of inclination of the tangent to the curve q_,(8)
at point A is determined approximately from the first Equation (8.2).

Yhen o increases the relative location of points (Fig. 10a) changes.
Points A and D approach each other. Point E moves toward C, goes over to
the arc CD and at a certain value of o coincides with C (Fig. 10b). This
takes place when at point C the derivative dv/du = k (a = 23°.18 and
8, = 44°.2 for x = 1.4).

At high values of a the quantity q = q_ (8,) (the curve passing through
point D) goes to infinity at point C, and it can be determined by
analysis of the initial data without any numerical integration of the
equation.

Further increase in « brings us to the point when B and C coincide,
as is shown on Fig. 10, e (a = 28915 for x = 1.4).

Furthermore the curve g (8,) is closed (Fig. 10e). In this case point
F coincides with D. This takes place when the velocity behind the strong
shock uy = =4 [(xk = 1)/(3k + 1)]. The curve q,(8,) has a vertical tangent
at p01nt D. Then q_(8;) becomes of the form™ (Flg 10), and this corre-
sponds to the case when in region 6 there is no solution. Finally curve
q,(8y) is drawn out to a point and this takes place when o becomes equal
to aO - the limiting angle of rotation when there is no field (a® = 45935
for k = 1.4).

Figure 11 shows calculated results for values ¢ for a = 30° when
L
curve gq (60) is closed (calculated points shown by circles),.
*

12. It follows from what has been said that the case when o < ®, for
given values of g, two solutions I exist of the boundary problem and
they transform into the nonmagnetic solutions, when the intensity of the
magnetic field tends to zero and there is an infinite number of solu-
tions Il for which the angle of inclination of the shock wave lies with-
in the interval between the two values obtained from solution I. The
quantity ¢, for which there exists a solution with an attached shock
wave, can change over the interval between zero to infinity for 0<a<a
and it will be limited from above for a, < a < o® (a, = 28°.15 for

= 1.4. When k increases the quantity a, decreases. With x >3 the
range within which g can be infinitely great is absent).

When there is a solution (6.2) for q = @, the magnetic field vectors
and the velocity vectors are parallel over the whole stream, whilst
pressure and density on the surface of the wedge become zero (7.6) (a
special type of pinch). As o(a > a,) approaches «® the range of vari-
ation of q where there exists a solution with a connected shock wave
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decreases, whilst for a - o® it draws out to zero.

Although the solution to the boundary value problem turns out to be
many valued, it is natural to assume
that at least in free flight a solu- g,
tion is realized which transforms
into the well known solution for flow [ﬁ
round a wedge with weak shock 7 - 0. 30
This follows from the requirement of \\
a continuous relationship in the
solution and the intensity of the \\
magnetic field. For this solution for up :

. . . 1 z
fixed a, as the intensity of the 1/7 j \\ !
magnetic field increases from zero 7 %
the angle of inclination of the shock / ! \\N
increases from the nonmagnetic 6,, to 7/ AE— A
its limiting value 6,. When « < ’
the value of 8, is obtained for in- Fig, 11.
finitely high field intensity, whilst
with o < a < «®, finite intensity is obtained. In the second case there
is no solution with an attached shock when the field intensity is in-
creased further, and this demonstrates that it is possible to transform
at a fairly high value of magnetic field from flow with attached shock
to flows with detached shock.
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